def my_dense(a_in, W, b, g):
"""
Computes dense layer
Args:
a_in (ndarray (n, )) : Data, 1 example
W (ndarray (n,j)) : Weight matrix, n features per unit, j units
b (ndarray (j, )) : bias vector, j units
g activation function (e.g. sigmoid, relu..)
Returns
a_out (ndarray (j,)) : j units
"""
= W.shape[1]
units = np.zeros(units)
a_out
for j in range(units):
= W[:,j]
w = np.dot(w, a_in) + b[j]
z = g(z)
a_out[j]
return(a_out)
NN in Numpy - Digit Recognition II
This is a continuation of Didit Recognintion I. Use all steps in that page up to now
Build Layer
Below, build a dense layer subroutine. The example in lecture utilized a for loop to visit each unit (j
) in the layer and perform the dot product of the weights for that unit (W[:,j]
) and sum the bias for the unit (b[j]
) to form z
. An activation function g(z)
is then applied to that result. This section will not utilize some of the matrix operations described in the optional lectures. These will be explored in a later section.
.
Check
# Quick Check
= 0.1*np.arange(1,3,1).reshape(2,) # (1 examples, 2 features)
x_tst = 0.1*np.arange(1,7,1).reshape(2,3) # (2 input features, 3 output features)
W_tst = 0.1*np.arange(1,4,1).reshape(3,) # (3 features)
b_tst = my_dense(x_tst, W_tst, b_tst, sigmoid)
A_tst print(A_tst)
Build Layers
# build 3 layer NN using my_dense function
def my_sequential(x, W1, b1, W2, b2, W3, b3):
= my_dense(x, W1, b1, sigmoid)
a1 = my_dense(a1, W2, b2, sigmoid)
a2 = my_dense(a2, W3, b3, sigmoid)
a3 return(a3)
Copy Weights
Copy weights from our example using TF
= layer1.get_weights()
W1_tmp,b1_tmp = layer2.get_weights()
W2_tmp,b2_tmp = layer3.get_weights() W3_tmp,b3_tmp
Predict
# make predictions
= my_sequential(X[0], W1_tmp, b1_tmp, W2_tmp, b2_tmp, W3_tmp, b3_tmp )
prediction if prediction >= 0.5:
= 1
yhat else:
= 0
yhat print( "yhat = ", yhat, " label= ", y[0,0])
= my_sequential(X[500], W1_tmp, b1_tmp, W2_tmp, b2_tmp, W3_tmp, b3_tmp )
prediction if prediction >= 0.5:
= 1
yhat else:
= 0
yhat print( "yhat = ", yhat, " label= ", y[500,0])
TF vs Numpy Predictions
import warnings
='ignore', category=FutureWarning)
warnings.simplefilter(action# You do not need to modify anything in this cell
= X.shape
m, n
= plt.subplots(8,8, figsize=(8,8))
fig, axes =0.1,rect=[0, 0.03, 1, 0.92]) #[left, bottom, right, top]
fig.tight_layout(pad
for i,ax in enumerate(axes.flat):
# Select random indices
= np.random.randint(m)
random_index
# Select rows corresponding to the random indices and
# reshape the image
= X[random_index].reshape((20,20)).T
X_random_reshaped
# Display the image
='gray')
ax.imshow(X_random_reshaped, cmap
# Predict using the Neural Network implemented in Numpy
= my_sequential(X[random_index], W1_tmp, b1_tmp, W2_tmp, b2_tmp, W3_tmp, b3_tmp )
my_prediction = int(my_prediction >= 0.5)
my_yhat
# Predict using the Neural Network implemented in Tensorflow
= model.predict(X[random_index].reshape(1,400))
tf_prediction = int(tf_prediction >= 0.5)
tf_yhat
# Display the label above the image
f"{y[random_index,0]},{tf_yhat},{my_yhat}")
ax.set_title(
ax.set_axis_off() "Label, yhat Tensorflow, yhat Numpy", fontsize=16)
fig.suptitle( plt.show()
Vectorization
We will use vectorization to speed the calculations. Below we will use an operation that computes output for all units in a layer. X and W must be compatible.
= X[0].reshape(-1,1) # column vector (400,1)
x = np.matmul(x.T,W1) + b1 # (1,400)(400,25) = (1,25)
z1 = sigmoid(z1)
a1 print(a1.shape)
We can go further and compute all examples in one Matrix
The full operation is π=ππ+πZ=XW+b. This will utilize NumPy broadcasting to expand πb to πm rows.
Build Layers
def my_dense_v(A_in, W, b, g):
"""
Computes dense layer
Args:
A_in (ndarray (m,n)) : Data, m examples, n features each
W (ndarray (n,j)) : Weight matrix, n features per unit, j units
b (ndarray (1,j)) : bias vector, j units
g activation function (e.g. sigmoid, relu..)
Returns
A_out (tf.Tensor or ndarray (m,j)) : m examples, j units
"""
= np.matmul(A_in,W) + b
Z = g(Z)
A_out
return(A_out)
Test
= 0.1*np.arange(1,9,1).reshape(4,2) # (4 examples, 2 features)
X_tst = 0.1*np.arange(1,7,1).reshape(2,3) # (2 input features, 3 output features)
W_tst = 0.1*np.arange(1,4,1).reshape(1,3) # (1,3 features)
b_tst = my_dense_v(X_tst, W_tst, b_tst, sigmoid)
A_tst print(A_tst)
Build NN
def my_sequential_v(X, W1, b1, W2, b2, W3, b3):
= my_dense_v(X, W1, b1, sigmoid)
A1 = my_dense_v(A1, W2, b2, sigmoid)
A2 = my_dense_v(A2, W3, b3, sigmoid)
A3 return(A3)
Copy Weights
= layer1.get_weights()
W1_tmp,b1_tmp = layer2.get_weights()
W2_tmp,b2_tmp = layer3.get_weights() W3_tmp,b3_tmp
Predict
Letβs make a prediction with all the examples at once
= my_sequential_v(X, W1_tmp, b1_tmp, W2_tmp, b2_tmp, W3_tmp, b3_tmp )
Prediction Prediction.shape
Apply Threshold
# threshold of 0.5
= (Prediction >= 0.5).astype(int)
Yhat print("predict a zero: ",Yhat[0], "predict a one: ", Yhat[500])
Plot
import warnings
='ignore', category=FutureWarning)
warnings.simplefilter(action# You do not need to modify anything in this cell
= X.shape
m, n
= plt.subplots(8, 8, figsize=(8, 8))
fig, axes =0.1, rect=[0, 0.03, 1, 0.92]) #[left, bottom, right, top]
fig.tight_layout(pad
for i, ax in enumerate(axes.flat):
# Select random indices
= np.random.randint(m)
random_index
# Select rows corresponding to the random indices and
# reshape the image
= X[random_index].reshape((20, 20)).T
X_random_reshaped
# Display the image
='gray')
ax.imshow(X_random_reshaped, cmap
# Display the label above the image
f"{y[random_index,0]}, {Yhat[random_index, 0]}")
ax.set_title(
ax.set_axis_off() "Label, Yhat", fontsize=16)
fig.suptitle( plt.show()
Misclassified
= plt.figure(figsize=(1, 1))
fig = np.where(y != Yhat)
errors = errors[0][0]
random_index = X[random_index].reshape((20, 20)).T
X_random_reshaped ='gray')
plt.imshow(X_random_reshaped, cmapf"{y[random_index,0]}, {Yhat[random_index, 0]}")
plt.title('off')
plt.axis( plt.show()